Brief information about the project

Name of the project	AP19175613 «Variational Methods in the Quantum
	Problem of Several Particles with Coulomb Interaction as
Relevance	Applied to Modern Problems of Physics» (0123PK00290). The project is dedicated to a current topic, and in addition
Kelevance	to its undoubted theoretical value, it has great practical
	significance, for example, for experiments to test changes
	in fundamental constants. The results of the work will be
	of great importance in metrology, namely for clarifying
	fundamental physical constants, primarily for improving
	the value of the electron-to-proton mass ratio, m_e/m_p .
Purpose	The goal of the project is to develop a variational method
	for three-particle quantum mechanical systems with an
	arbitrary value of quantum angular momentum, based on
	the representation of the Schrödinger equation in Breit-
	Hilleraas symmetry in spheroidal coordinates, as well as to
	carry out high-precision energy calculations.
Objectives	1. Calculate non-relativistic ionization energies of exotic
	atoms with high accuracy.
	2. Calculate higher corrections of order $m\alpha^8$ in the
	adiabatic approximation for the antiproton helium atom.
	3. Study of the spin structure of the order $m\alpha^6$ and
	$m\alpha^{7}\ln(\alpha)$ in antiproton helium atoms. Calculation of the
	sensitivity of binding energy to particle masses in an
	antiproton helium atom.
Expected and achieved results	In this project, nonrelativistic ionization energies of exotic
	atoms are calculated with high accuracy. Data on magnetic
	dipole transitions in the molecular H_2^+ ion were obtained
	for a wide range of v and L, quantum numbers of
	vibrational and total orbital momentum. The results of the
	work were published in the highly rated journal Physical
	Review A. (Q1 by scopus).
	The spin structure of order $m\alpha^6$ and $m\alpha^7 \ln(\alpha)$ in antiproton
	helium atoms will be calculated. Higher order corrections
	ma ⁸ will be calculated in the adiabatic approximation for
	the antiproton helium atom with very high accuracy. The
	leading relativistic corrections will be calculated, in
	particular, systematic calculations of relativistic
	corrections in the antiproton helium atom will be
	determined.
	The results obtained will have a significant impact on the
	development of metrology to improve physical
	fundamental constants, astrochemistry, and the space
	industry. In particular, to create atomic clocks that are used
	for a space navigation system, which in turn can provide greater accuracy of parameters for determining the
	astrochemical characteristics of substances, as well as the
	astrochemical characteristics of substances, as well as the

	movement of cars automatically via satellite communications, which in turn are scientific and technological needs.
Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	1.Aznabayev Damir Talgatovich, PhD, Hirsch index – 6, ORCID: 0000-0001-5065-1299, Scopus author ID: 55621187200.
List of publications with links to them	D. T. Aznabayev, A. K. Bekbaev, and V. I. Korobov. Magnetic dipole transitions in the H 2 + ion // Physical Review A. DOI: https://doi.org/10.1103/PhysRevA.108.052827 (2023).
Patents	-